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WHY DO WE NEED MACHINE LEARNING FOR
CONNECTED VEHICLES?
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FOUR MAIN PILLARS DRIVE THE DIGITAL TRANSFORMATION PROCESS.CONNECTED VEHICLES BRING DIGITALIZATION INTO THE 
VEHICLE
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PERSONAL 
SMART 

DEVICES
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• Improve traffic and road safety
• Autonomous driving
• Integrate with the smart city

• Journey management
• Predictive vehicle maintenance
• Personal preferences

WHY WE NEED MACHINE LEARNING IN THE VEHICLE?
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JOURNEY MANAGEMENT
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CUSTOMER

P

IMPROVING USER AND CAR EXPERIENCE TO MEET CUSTOMERS’ INDIVIDUAL 
MOBILITY NEEDS
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BMW CONNECTED – LAUNCHED 2016
Page 7



BMW CONNECTED – LAUNCHED 2016
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HOW DO WE LEARN A DESTINATION?
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POI
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• Process trip data to be completed
• Identify stay points for each trip
• Spatial data clustering of stay points

using hierarchical clustering
• Post processing
• Home and work recognition

ALGORITHM FOR LEARNED DESTINATIONS
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PREDICTED TRIPS

• Must be frequent trip
• Context

• Last SP, weekday, hour, morning,
weekend/workday, morning/noon/
afternoon/evening/night

• Method:  Contextual 
association rule mining

• Contextual  association rule mining finds the frequent co-occurring associations among a 
collection of items in certain context. It is the extension of traditional association rule mining.

• Example Mined Contextual Rules: 

• {(Is Monday: Yes), (time range: AM6:30-7:00)} Home ⇒ Railway station.
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LEARN YOUR FREQUENT AND PREDICTED TRIPS AND PLAN TRIP
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SCHEDULED MEETING AS NEXT TRIP
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NEXT TRIP SENT TO VEHICLE AUTOMATICALLY SO READY TO GO!
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FOUR MAIN PILLARS DRIVE THE DIGITAL TRANSFORMATION PROCESS.LEARN YOUR FUEL CONSUMPTION AFTER A TRIP
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FUEL CONSUMPTION ALGORITHM FOR TRIP SUMMARY
• X-axis: travel speed TS (km/h);
• Y-axis: fuel consumption rate FCR (km/L);
• TS-FCR can be fitted by Gaussian function;
• Travel speed of a trip has impacts on fuel consumption
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PREDICTIVE VEHICLE MAINTENANCE
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BACKGROUND: DETECTING EARLY FAULTS BEFORE BECOMING FAILURES

• Rule-based and model-based approaches do not work with increasing 
vehicle complexity and rich data
• Can perform data-driven automotive diagnostics with machine 

learning and deep learning BUT done off-board and not automated
• Example: Detecting pre-ignitions before causing serious material 

damage to the engine of a car

Machine Learning for the Connected Car



Pre-ignition: A pre-ignition is a combustion of the fuel-air mixture in a cylinder which is not triggered by a 
spark but by a hot-spot prior to the spark timing.

• Occur in high-pressure turbocharged 
petrol engines.

• The root causes of PIs is not fully 
understood but are related to [1]:
• Lubricating oil.
• Mix of gasoline/oil.
• Floated deposit.
• Gas-phase auto ignition.
• Fuel properties.

• Can lead to serious material damage especially if several PIs
occur sequentially.

• Main aim is to suppress PI chains.

Potential process from PI to super-knock: (a) auto-ignition induced by hot-
spot, (b) spark ignition and flame, and (c) end-gas detonation induced by hot-
spot.6)

[1] Z. Wang, H. Liu, T. Song, Y. Qi, X. He, S. Shuai, and J. Wang, “Relationship between super-knock and pre-ignition,” International Journal of Engine 
Research, vol. 16, no. 2, pp. 166–180, 2014. 

PRE-IGNITION
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PREVIOUS WORK: DATA-DRIVEN AUTOMOTIVE DIAGNOSTICS PROCESS

On-board – Data generation & recording. Off-board – Data structuring & model training.
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P. Wolf et al., “Pre-ignition detection using deep neural networks: A step towards data-driven automotive diagnostics,” in 21st IEEE International Conference on Intelligent 
Transportation Systems (ITSC), 2018, pp. 176–183.
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CONVOLUTIONAL NEURAL NETWORK (CNN)
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LONG SHORT-TERM MEMORY (LSTM)
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THE COMBINATION OF 4 CNNS AND 2 LSTMS HAS BEEN FOUND TO BE THE 
BEST POSSIBLE ARCHITECTURE FOR PRE-IGNITION DETECTION

Deep Automotive Diagnostics Model (DADN)

DADN for pre-ignition detection through 
classification. 

𝐶(𝐹!): convolutional layer 𝑙 with 𝐹! feature maps (and kernel 𝐾!).*
𝐷(𝑧!): recurrent (LSTM) layer 𝑙 with 𝑧! cells.
𝑆𝑀(𝑛): softmax layer with 𝑛 neurons (classes).

Proposed architecture of DADN comprising four CNN layers (64 filters) for feature learning, two LSTMs layers with 96 cells per layer to learn temporal relationships, and a 
softmax layer.

* Subscripts of kernels are omitted due to a clearer visualization.
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PROBLEM AND MOTIVATION

• How to run the model in the car where resources are constrained in 
the embedded environment?
• How to develop, manage and deploy the model to thousands of cars 

easily? 
• We want to run an efficient, scalable model without sacrificing 

performance and accuracy
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OUR SOLUTION AND CONTRIBUTIONS

• We create an end-to-end framework using enterprise cloud and IoT 
edge technologies for training, testing and deploying to thousands of 
vehicles
• We evaluate performance of Data-driven Automotive Diagnostics 

Network (DADN) with other models varying number of CNNs and 
LSTMs
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CLOUD IOT EDGE FRAMEWORK FOR DATA-DRIVEN AUTOMOTIVE 
DIAGNOSTICS 
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PI Data used in this work:
• 1600+ test drives with special gasoline
• Internal engine ECU signals extracted by data recorders
• Input matrix 𝐼!,#:

• High dimensional: 1681 features.
• High frequency: >20 Hz

• Hypothesis testing identified 484 statistically relevant features
• Labels: PI indicators extracted by expert analysis
• Experiments: use top 50% (242) and top 5% (24)
• Preprocessing includes:

• Slice relevant sequences using a pragmatic undersampling approach
• Split data to generate dataset: 70% training data, 15% validation data, 15% test data
• Sliding window approach

PRE-IGNITION DATASET
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DEVELOPMENT AND IMPLEMENTATION

• Using Raspberry Pi 3+ to simulate vehicle head-unit
• Training the models using Python and Microsoft Azure Machine 

Learning Service
• Executing the predictive models using Python, Docker and Azure IoT 

Edge
• Visualizing the results using Microsoft Power BI
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SELECTING WHICH MODELS TO USE FOR EXPERIMENTS: 
HIGHEST F1 -SCORE

Highest F1-score for various models for top 50% of input features on the PI dataset
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PERFORMANCE RESULTS FOR PREDICTION MODELS (TOP 50%)
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ACCURACY OF PREDICTED PRE-IGNITION FROM DADN
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PERSONAL PREFERENCES
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DIETER MAY

TOWARD CONTEXTUAL AND PERSONALIZED INTERIOR 
EXPERIENCE IN A VEHICLE: PREDICTIVE PRECONDITIONING

ALVIN CHIN1, JILEI TIAN1 AND JOHANN PRENNINGER2
1BMW TECHNOLOGY CORPORATION (CHICAGO), 2BMW GROUP (MUNICH)
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BACKGROUND: PERSONALIZED INTERIOR OF A VEHICLE

• Personalization exists in vehicle but based on explicit driver preferences
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PREVIOUS WORK

• Automatically waking up vehicle and performing preconditioning before 
requested departure time [US Patent US20110153140A1, GM]
• Remotely starting engine of vehicle depending on temperature [US Patent 

US20100235046A1, GM]
• Infotainment [Rogers et al., 1997], recommending personalized audio 

content [Arnason et al., 2014]
• Personalized ADAS [Hasenjager and Wersing, 2017] 
• Automatically learning seat heating preferences [Laudy et al., BMW, 

2018]
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PROBLEM AND MOTIVATION

• How to create a system for personalized smart interior that can 
provide a proactive and comfortable user experience?
• For predictive preconditioning, how can we recommend and notify 

drivers when to precondition their vehicles, depending on vehicle’s 
parking environment, user behavior, departure time and weather?
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OUR SOLUTION AND CONTRIBUTIONS

• We create a machine learning framework for smart interior that 
supports predictive preconditioning
• We recommend and notify drivers about preconditioning by 

considering weather, departure time, user behavior and parking
• We implement the framework in a real production environment
• We evaluate the performance and effectiveness of the predictive 

preconditioning algorithm through data analytics and user feedback
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PREDICTIVE PRECONDITIONING FLOW
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PREDICTIVE PRECONDITIONING NOTIFICATION
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PREDICTIVE PRECONDITIONING MODEL: 
1. COLLECT PERSONAL DRIVING DATA

Collect all the history driving data about the user

• Location data

• Exterior temperature: 𝑇$%&

• Interior temperature: 𝑇'(

• Weather temperature: W

Global users’
driving data
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PREDICTIVE PRECONDITIONING MODEL: 
2. CREATE GLOBAL MODEL (i) Feature extraction

• Exterior temperature (first x records) criteria (𝑒𝑡𝑗) set as 1, if any 
or average 𝑇!"#" < 𝛼𝑐𝑜𝑙𝑑 for where 𝑖 ≤ 𝑥., otherwise as 0

• Wait time (𝑤𝑡𝑗): duration between first car record and first record
with temperature 𝑇!"##

• Max difference of interior temperature and exterior temperature
for the first x records (𝑚𝑑𝑗): max 𝑎𝑏𝑠 𝑇!"#" , 𝑇$%" , 𝑓𝑜𝑟 𝑖 ≤ 𝑥

• Interior temperature (first x records) criteria (𝑖𝑡𝑗), set as 1, if any 
or average 𝑇$%" < 𝛽𝑐𝑜𝑙𝑑 for where 𝑖 ≤ 𝑥. Otherwise as 0

Global preconditioning
model

Global users’
driving data

𝑇𝑝< =f(etj, wtj, mdj, itj)
(ii) Outdoor parking probability

(iii) Global comfortable temperature
model

(iv) Global preconditioning model
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• Combine above to label trip by parking type, use outdoor temp
• Predict whether there should be preconditioning or not based on 

the global comfortable temperature model
• Supervised learning to learn the relationship between 

preconditioning, exterior temperature and wait time



PREDICTIVE PRECONDITIONING MODEL: 
3. CREATE PERSONALIZED MODEL 

Global preconditioning
model

Global users’
driving data

Personalized
preconditioning

model

Personal 
user’s driving 

data

Real-time 
weather, parking 

location

(i) Bi-logistic regression

𝑃𝑟𝑒 = #
#$%!(#$%∗'()*()

× #
#$%!(,-∗'.)*.)

−
#

#$%!(#$%∗'/)*/)
× #
#$%!(,-∗'0)*0)

+ 𝜀

(ii) Find personalized parameters 𝑤 = {𝛼=, 𝛽=, 𝜀},           
i = 1,..,4

𝐸 𝑤 = 𝑊> {𝑃𝑟𝑒 𝑤𝑒𝑎, 𝑠𝑑, 𝑤 − 𝑌}?+ @
? 𝑤 ?

(iii) Optimize w

𝑤ABC = 𝑤A − 𝑙𝑟A 7 𝛻𝐸 𝑤A
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PREDICTIVE PRECONDITIONING MODEL: 
4. PREDICT DECISION AND GET USER FEEDBACK

Global preconditioning
model

Global users’
driving data

Personalized
preconditioning

model

Personal 
user’s driving 

data

Real-time 
weather, parking 

location

Preconditioning
decision and user’s

feedback

• Precondition decision is made based 
on the model output

• If high confidence level, 
automatically precondition vehicle

• If very low confidence level, do 
nothing

• Otherwise, notify user and let user 
choose whether a precondition is 
needed

• Feedback used to update model 
parameters and adapt personalized 
preconditioning model
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ALGORITHM EVALUATION

From 240 trips, accuracy = 91%, precision = 76%, recall = 89%
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SYSTEM PERFORMANCE AND ANALYTICS INSIGHT

Active user, on average, executes cooling, heating or ventilation at least 
twice in a week from the preconditioning notifications sent
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SUMMARY

• Machine learning can be used to learn driver behavior patterns for 
journey management 
• Machine learning can be used to predict faults of components in a 

vehicle before they become failures for predictive maintenance
• Machine learning can be used to learn user’s personal preferences for 

personalization in the vehicle
• Machine learning can be used to make The Ultimate Smart Driving 

Machine
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FOUR MAIN PILLARS DRIVE THE DIGITAL RANSFORMATION PROCESS.THANKS!
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