MACHINE LEARNING FOR THE CONNECTED CAR

DR. ALVIN CHIN, AI AND EMERGING TECHNOLOGY RESEARCHER BMW GROUP TECH OFFICE USA

IEEE COMSOC OREGON CHAPTER MEETING, FEB. 25, 2021

WHY DO WE NEED MACHINE LEARNING FOR CONNECTED VEHICLES?

CONNECTED VEHICLES BRING DIGITALIZATION INTO THE VEHICLE

Machine Learning for the Connected Car

WHY WE NEED MACHINE LEARNING IN THE VEHICLE?

- Improve traffic and road safety
- Autonomous driving
- Integrate with the smart city
- Journey management
- Predictive vehicle maintenance
- Personal preferences

JOURNEY MANAGEMENT

IMPROVING USER AND CAR EXPERIENCE TO MEET CUSTOMERS' INDIVIDUAL MOBILITY NEEDS

Machine Learning for the Connected Car

Dinner with Robert

- 15 The Embarcadero San Francisco, CA 94111

BMW CONNECTED – LAUNCHED 2016

Next Trip

CONNECTS YOUR VEHICLE TO YOUR LIFE.

HOW DO WE LEARN A DESTINATION?

BMW

GROUP

THE NEXT

100 YEARS

ALGORITHM FOR LEARNED DESTINATIONS

- Process trip data to be completed
- Identify stay points for each trip
- Spatial data clustering of stay points using hierarchical clustering
- Post processing
- Home and work recognition

PREDICTED TRIPS

- Must be frequent trip
- Context
 - Last SP, weekday, hour, morning, weekend/workday, morning/noon/ afternoon/evening/night
- Method: Contextual association rule mining

 Contextual association rule mining finds the frequent co-occurring associations among a collection of items in certain context. It is the extension of traditional association rule mining.

Instance, trip data given in lat/lon

- Example Mined Contextual Rules:
- {(Is Monday: Yes), (time range: AM6:30-7:00)} Home \Rightarrow Railway station.

Semantic location and route: significant location and personal route

LEARN YOUR FREQUENT AND PREDICTED TRIPS AND PLAN TRIP

••••• AT&T 🗢	5:34 PM 🚽 🕴 56%	••••• AT&T 🗢	5:19 PM	1 ∦ 63% ⊡ ⊃	●● ○○○ AT&T 🗢	4:54 PM	🕇 🕴 67% 🔲 🖯	💮 🖬 🖾 🖾 🛥 😔 🗭 🛇 ⊄ 🕏 💥 😤 📶 77% 🖬 4:54	4 PM
Q Search		🖌 🖓 Locate Veh	Locate Vehicle		K Back Details Share		Share	theMART O	
Recent		so 40 to	chaumburg			1	W Lake St	W Fulton Market W Fulton St	ker Dr
CONNECTEDINT NA	no	min Tri	p Summary		Accession in the		<u>A</u>	Lake St Clinton 🖾	
Leave in 10 minutes to	get to Driverless City.		IN TO DE FIN		Work		,	z W Randolph St	
CONNECTEDINT NA	3m ag	More Details		>	100 N Riverside P	اz, Chicago, IL 60606, ۱	Jnited States	STE Ogilvie	12
Leave in 10 minutes to	get to Driverless City.	Driverless City			0.6 mi • Frequenti	y visited		518 2 Transportation Center WW	ashingt
and the second se		3440 S Dearborn	St, Chicago, IL 60616,	U • 4.6 mi	5 min 🗂			residential Towers O	3
Friday		16 min			Arrive: 4:58 PM CI	DT		🤴 W Manroe St	
SWARM	Fri 8:37 Pf	Leave: 5:43 Pl Scheduled: 6:	4 00 PM	Go	1000	Go			
Pawel B. at 🎄 Catherin	ne Chevalier Woods in Cook, IL							Work	
SWARM	Fri 8:17 Pf	On research	oom-19A104-Monaco	P • 0.6 mi		Send to Vehicle		100 N Riverside Plz, Chicago, IL 60606, Un	
anderson c. at 🥥 Mari (w/ 5 others)	iano's Fresh Market in Lakeviev	Friday at 2:00	PM	60	P Find Parki	ing Nearby		1 min 0.03 mi	
SWARM	Fri 7:58 Pf	Suggested Lo	cation		Schedule			Send to Vehicle Messages	
anderson c. at 💪 XSpo	ort Fitness in Lakeview	Midewin Nation	al Tallgrass Prairie		☆ Save for L	.ater		🖄 Save for later	
	Fri 6:24 P!	30239 S State Ro	ute 53, Wilmington, IL	. • 58.7 mi	r Walk to D	estination		Share arrival time	
Leave in 10 minutes to	get to My Fair Lady.	Arrive: 6:58 Pl		Go					
-	••	Vehicle A	Ctivity Destinations	o o o More	Vehicle	Activity Destination	ooo ns More	🛠 Show walking directions	

BMW

SCHEDULED MEETING AS NEXT TRIP

🔹 TATA 🕪	12:39 AM	🕈 🛊 43% 🔳 🔿
Apr 25	Event Details	Edit

The Ultimate Smart Driving Machine: Powering the Connected Car with Machine Learning

540 W Madison St., Suite 2400 Chicago, Illinois United States 60661

Notes

BMW

GROUP

After a hiatus, the IEEE Vehicular Technology Society Chicago chapter has resumed again. We will start our chapter meeting this year with

Delete Event

THE NEX

100 YEARS

NEXT TRIP SENT TO VEHICLE AUTOMATICALLY SO READY TO GO!

LEARN YOUR FUEL CONSUMPTION AFTER A TRIP

•≈• AT&T 🗢	5:19 PM	⊀ ∦ 63% 🗖 ⊃
Cocate	Vehicle	>
40 min	Schaumburg to Chicago Trip Summary 5/9/17, 10:02 PM	
More Details		>
3440 S Dear 16 min Leave: 5 Scheduk	born St, Chicago, IL 606 1 :43 PM ed: 6:00 PM	516, U • 4.6 mi Go
On researc RES-23.53-0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	h 201-Room-19A104-Mon 2:00 PM ed Location	aco_P • 0.6 mi
Midewin Na 30239 S Sta D 1 hr 39 Arrive: 6 Shared	ational Tallgrass Prairi te Route 53, Wilmington I min 158 PM	ie , IL • 58.7 mi Go
e	C P	000

•••• ○ AT&T 🗢	11:09 PM	🕇 🕸 81% 💶 D
< Back	Trip Summary	
	5/9/17	
Carpentersville pa South Elgin Bgin Ba Dittern Batavia Vagat	latine Arights Winnetk Schaumburg Skoke ritett Park Carco Relige Stream Emburst Wheaton Cicero Bernyn Nanerville	a: ston Bicago
Schaumt	ourg	9:22 PM
 📁 Chicago		10:02 PM
40 min		Trip Time
27.96 mi		Distance
41.63 mpł	n	Average Speed
1.2 gal		Fuel Used
	Remove	
A Destri		BB 000 Hub More

FUEL CONSUMPTION ALGORITHM FOR TRIP SUMMARY

- X-axis: travel speed TS (km/h);
- Y-axis: fuel consumption rate FCR (km/L);
- TS-FCR can be fitted by Gaussian function;
- Travel speed of a trip has impacts on fuel consumption

PREDICTIVE VEHICLE MAINTENANCE

A CLOUD IOT EDGE FRAMEWORK FOR EFFICIENT DATA-DRIVEN AUTOMOTIVE DIAGNOSTICS ALVIN CHIN¹, PETER WP WOLF² AND JILEI TIAN¹ ¹BMW TECHNOLOGY CORPORATION (CHICAGO), ²BMW GROUP (MUNICH)

BARCELONA, PASSEIG TAULAT

Add as intermediate destination

tart route guidance

Alvin Chin

.....

BACKGROUND: DETECTING EARLY FAULTS BEFORE BECOMING FAILURES

- Rule-based and model-based approaches do not work with increasing vehicle complexity and rich data
- Can perform data-driven automotive diagnostics with machine learning and deep learning BUT done off-board and not automated
- Example: Detecting pre-ignitions before causing serious material damage to the engine of a car

PRE-IGNITION

Pre-ignition: A pre-ignition is a combustion of the fuel-air mixture in a cylinder which is not triggered by a spark but by a hot-spot prior to the spark timing.

- Occur in high-pressure turbocharged petrol engines.
- The root causes of PIs is not fully

understood but are related to ^[1]:

- Lubricating oil.
- Mix of gasoline/oil.
- Floated deposit.
- Gas-phase auto ignition.
- Fuel properties.
- Can lead to serious material damage especially if several PIs occur sequentially.
- Main aim is to suppress PI chains.

Potential process from PI to super-knock: (a) auto-ignition induced by hot-spot, (b) spark ignition and flame, and (c) end-gas detonation induced by hot-spot. $^{6)}$

[1] Z. Wang, H. Liu, T. Song, Y. Qi, X. He, S. Shuai, and J. Wang, "Relationship between super-knock and pre-ignition," International Journal of Engine Research, vol. 16, no. 2, pp. 166–180, 2014.

PREVIOUS WORK: DATA-DRIVEN AUTOMOTIVE DIAGNOSTICS PROCESS

P. Wolf et al., "Pre-ignition detection using deep neural networks: A step towards data-driven automotive diagnostics," in 21st IEEE International Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 176–183.

CONVOLUTIONAL NEURAL NETWORK (CNN)

LONG SHORT-TERM MEMORY (LSTM)

THE COMBINATION OF 4 CNNS AND 2 LSTMS HAS BEEN FOUND TO BE THE BEST POSSIBLE ARCHITECTURE FOR PRE-IGNITION DETECTION

Deep Automotive Diagnostics Model (DADN)

Proposed architecture of DADN comprising four CNN layers (64 filters) for feature learning, two LSTMs layers with 96 cells per layer to learn temporal relationships, and a softmax layer.

 $C(F^{l})$: convolutional layer l with F^{l} feature maps (and kernel K^{l}).* $D(z^{l})$: recurrent (LSTM) layer l with z^{l} cells. SM(n): softmax layer with n neurons (classes).

* Subscripts of kernels are omitted due to a clearer visualization.

BMW GROUP

DADN for pre-ignition detection through classification.

PROBLEM AND MOTIVATION

- How to run the model in the car where resources are constrained in the embedded environment?
- How to develop, manage and deploy the model to thousands of cars easily?
- We want to run an efficient, scalable model without sacrificing performance and accuracy

OUR SOLUTION AND CONTRIBUTIONS

- We create an end-to-end framework using enterprise cloud and IoT edge technologies for training, testing and deploying to thousands of vehicles
- We evaluate performance of Data-driven Automotive Diagnostics Network (DADN) with other models varying number of CNNs and LSTMs

CLOUD IOT EDGE FRAMEWORK FOR DATA-DRIVEN AUTOMOTIVE DIAGNOSTICS

PRE-IGNITION DATASET

PI Data used in this work:

- 1600+ test drives with special gasoline
- Internal engine ECU signals extracted by data recorders
- Input matrix $I_{X,0}$:
 - High dimensional: 1681 features.
 - High frequency: >20 Hz
- Hypothesis testing identified 484 statistically relevant features
- Labels: PI indicators extracted by expert analysis
- Experiments: use top 50% (242) and top 5% (24)
- Preprocessing includes:

BM

- Slice relevant sequences using a pragmatic undersampling approach
- Split data to generate dataset: 70% training data, 15% validation data, 15% test data
- Sliding window approach

28

DEVELOPMENT AND IMPLEMENTATION

- Using Raspberry Pi 3+ to simulate vehicle head-unit
- Training the models using Python and Microsoft Azure Machine Learning Service
- Executing the predictive models using Python, Docker and Azure IoT Edge
- Visualizing the results using Microsoft Power BI

SELECTING WHICH MODELS TO USE FOR EXPERIMENTS: HIGHEST F1 -SCORE

	F1-score and network parameters for model				
Model	F1-score	# of network parameters			
4 CNN, 2 LSTM	0.893	173570			
6 CNN, 0 LSTM	0.891	42754			
2 CNN, 2 LSTM	0.888	165250			
2 CNN, 0 LSTM	0.885	26114			
0 CNN, 2 LSTM	0.882	213890			
0 CNN, 1 LSTM	0.876	139778			
1 CNN, 0 LSTM	0.872	21954			

Highest F1-score for various models for top 50% of input features on the PI dataset

PERFORMANCE RESULTS FOR PREDICTION MODELS (TOP 50%)

	Performance results (prediction time, memory used) and F1-score ranked by prediction time					
Model	F1- score	Mean predicted time (ms)	Standard deviation for predicted time	Memory overhead for setup (MB)	Memory for second prediction (MB)	A102
LDA-LR	0.692	12.4	5.08	71.4	0	i i i
1 CNN, 0 LSTM	0.872	22.7	8.84	160	2.4	
2 CNN, 0 LSTM	0.886	28.4	13.6	161	1.9	
6 CNN, 0 LSTM	0.892	37.7	14.9	166	1.8	
0 CNN, 1 LSTM	0.876	75.4	115	176	8.2	1
4 CNN, 2 LSTM	0.893	104	<mark>43.7</mark>	196	14.7	
0 CNN, 2 LSTM	0.882	126	50	191	11.6	
2 CNN, 2 LSTM	0.888	128	51.1	193	4.7	
	Model LDA-LR 1 CNN, 0 LSTM 2 CNN, 0 LSTM 6 CNN, 0 LSTM 6 CNN, 1 LSTM 4 CNN, 1 LSTM 4 CNN, 2 LSTM 0 CNN, 2 LSTM 2 CNN, 2 LSTM	ModelPerform F1-sconModelF1- scoreLDA-LR0.6921CNN, 0.8722CNN, 0.LSTM0LSTM6CNN, 0.8920CNN, 1.LSTM0CNN, 0.8930CNN, 0.8930CNN, 0.8930CNN, 0.8822CNN, 0.8822CNN, 0.888	ModelPerformance result F1-score ranked byModelF1- score predicted time (ms)LDA-LR0.69212.41CNN, 0.87222.72CNN, 0LSTM0.88628.46CNN, 0.89237.70CNN, 1LSTM0.87675.44CNN, 2LSTM0.8931040CNN, 2LSTM0.8821262CNN, 0.888128	ModelPerformance results (prediction F1-score ranked by prediction t scoreModelF1- scoreMean predicted (ms)Standard deviation for predicted time (ms)LDA-LR0.69212.45.081CNN, 0.87222.78.842CNN, 0 LSTM0.87222.78.842CNN, 0 LSTM0.88628.413.66CNN, 0 LSTM0.89237.714.90CNN, 1 LSTM0.87675.41154CNN, 2 LSTM0.88310443.70CNN, 2 LSTM0.88812851.1	Performance results (prediction time, memor Model $F1$ -score ranked by prediction time Standard deviation for predicted time (ms) Memory overhead for setup (MB) LDA-LR 0.692 12.4 5.08 71.4 1 CNN, 0.872 22.7 8.84 160 2 CNN, 0.886 28.4 13.6 161 6 CNN, 0.892 37.7 14.9 166 0 LSTM 0.876 75.4 115 176 4 CNN, 0.893 104 43.7 196 0 0 CNN, 0.888 128 51.1 193	Performance results (prediction time, memory used) and F1-score ranked by prediction timeModelF1- scoreMean predicted time (ms)Standard deviation for predicted time (MB)Memory overhead for setup (MB)LDA-LR0.69212.45.0871.401CNN, 0 LSTM0.87222.78.841602.42CNN, 0 LSTM0.88628.413.61611.96CNN, 0 LSTM0.89237.714.91661.80CNN, 1 LSTM0.87675.41151768.24CNN, 2 LSTM0.8821265019111.62CNN, 0.88812851.11934.7

ACCURACY OF PREDICTED PRE-IGNITION FROM DADN

PERSONAL PREFERENCES

Machine Learning for the Connected Car

TOWARD CONTEXTUAL AND PERSONALIZED INTERIOR EXPERIENCE IN A VEHICLE: PREDICTIVE PRECONDITIONING ALVIN CHIN¹, JILEI TIAN¹ AND JOHANN PRENNINGER² ¹BMW TECHNOLOGY CORPORATION (CHICAGO), ²BMW GROUP (MUNICH)

BARCELONA, PASSEIG TAULAT

Start route guidance Add as intermediate destination

Nov 18-Dec 16, 2020

Alvin Chin

.....

BACKGROUND: PERSONALIZED INTERIOR OF A VEHICLE

• Personalization exists in vehicle but based on explicit driver preferences

PREVIOUS WORK

- Automatically waking up vehicle and performing preconditioning before requested departure time [US Patent US20110153140A1, GM]
- Remotely starting engine of vehicle depending on temperature [US Patent US20100235046A1, GM]
- Infotainment [Rogers et al., 1997], recommending personalized audio content [Arnason et al., 2014]
- Personalized ADAS [Hasenjager and Wersing, 2017]
- Automatically learning seat heating preferences [Laudy et al., BMW, 2018]

PROBLEM AND MOTIVATION

- How to create a system for personalized smart interior that can provide a proactive and comfortable user experience?
- For predictive preconditioning, how can we recommend and notify drivers when to precondition their vehicles, depending on vehicle's parking environment, user behavior, departure time and weather?

OUR SOLUTION AND CONTRIBUTIONS

- We create a machine learning framework for smart interior that supports predictive preconditioning
- We recommend and notify drivers about preconditioning by considering weather, departure time, user behavior and parking
- We implement the framework in a real production environment
- We evaluate the performance and effectiveness of the predictive preconditioning algorithm through data analytics and user feedback

PREDICTIVE PRECONDITIONING FLOW

PREDICTIVE PRECONDITIONING NOTIFICATION

PREDICTIVE PRECONDITIONING MODEL: 1. COLLECT PERSONAL DRIVING DATA

Collect all the histo	ory driving data	about the user
-----------------------	------------------	----------------

 Location data 	а
-----------------------------------	---

- Exterior temperature: *T*_{out}
- Interior temperature: *T_{in}*
- Weather temperature: W

Global users'

driving data

PREDICTIVE PRECONDITIONING MODEL: 2. CREATE GLOBAL MODEL (i) Feature e

(iii) Global comfortable temperature model

BMW

(i) Feature extraction

- Exterior temperature (first x records) criteria (et_j) set as 1, if any or average $T_{out_i} < \alpha_{cold}$ for where $i \le x$., otherwise as 0
- Wait time (wt_j) : duration between first car record and first record with temperature T_{out_1}
- Max difference of interior temperature and exterior temperature for the first x records (md_j) : max $(abs(T_{out_i}, T_{in_i}))$, for $i \le x$
- Interior temperature (first x records) criteria (it_j) , set as 1, if any or average $T_{in_i} < \beta_{cold}$ for where $i \le x$. Otherwise as 0

(ii) Outdoor parking probability

 $Tp_j = f(et_j, wt_j, md_j, it_j)$

(iv) Global preconditioning model

- Combine above to label trip by parking type, use outdoor temp
- Predict whether there should be preconditioning or not based on the global comfortable temperature model
- Supervised learning to learn the relationship between preconditioning, exterior temperature and wait time

PREDICTIVE PRECONDITIONING MODEL: 3. CREATE PERSONALIZED MODEL

BMW

GROUP

(i) Bi-logistic regression

$$Pre = \frac{1}{\frac{1}{1 + e^{-(wea * \alpha_1 + \beta_1)}}} \times \frac{1}{\frac{1}{1 + e^{-(sd * \alpha_2 + \beta_2)}}} - \frac{1}{\frac{1}{1 + e^{-(wea * \alpha_3 + \beta_3)}}} \times \frac{1}{\frac{1}{1 + e^{-(sd * \alpha_4 + \beta_4)}}} + \varepsilon$$

(ii) Find personalized parameters $w = \{\alpha_i, \beta_i, \varepsilon\},\$ i = 1,..,4 $E(w) = W_e \{Pre(wea, sd, w) - Y\}^2 + \frac{\tau}{2} ||w||^2$

(iii) Optimize w

$$w_{k+1} = w_k - lr_k \cdot \nabla E(w_k)$$

PREDICTIVE PRECONDITIONING MODEL: 4. PREDICT DECISION AND GET USER FEEDBACK

- Precondition decision is made based on the model output
- If high confidence level, automatically precondition vehicle
- If very low confidence level, do nothing
- Otherwise, notify user and let user choose whether a precondition is needed
- Feedback used to update model parameters and adapt personalized preconditioning model

Machine Learning for the Connected Car

ALGORITHM EVALUATION

From 240 trips, accuracy = 91%, precision = 76%, recall = 89%

SYSTEM PERFORMANCE AND ANALYTICS INSIGHT

Active user, on average, executes cooling, heating or ventilation at least twice in a week from the preconditioning notifications sent

Machine Learning for the Connected Car

- Machine learning can be used to learn driver behavior patterns for journey management
- Machine learning can be used to predict faults of components in a vehicle before they become failures for predictive maintenance
- Machine learning can be used to learn user's personal preferences for personalization in the vehicle
- Machine learning can be used to make The Ultimate Smart Driving Machine

THANKS!

Dr. Alvin Chin

Al and Emerging Technology Researcher IT Innovation and Research Silicon Valley (FG-AM-7MV) BMW Group Tech Office USA

E-mail: <u>alvin.chin@bmwna.com</u> Web: <u>http://www.alvinychin.com</u>

