Oregon IEEE ComSoc Chapter

Wireless Time Sensitive Networking (TSN) from Ethernet to Wi-Fi, 5G and beyond

Dave Cavalcanti, PhD, Principal Engineer, Intel Corporation

Contributors and Acknowledgements

- Mark Eisen
- Juan Fang
- Mikhail Galeev
- Javier Perez-Ramirez
- Susruth Sudhakaran
- Jeff Foerster
- David Gonzalez-Aguirre
- Javier Felip Leon
- Vincent Mageshkumar
- Amit Baxi
- Tony Chun

- Krishna Prabhu
- Kevin Stanton
- Chris Hall
- Anil Keshavamurthy
- Chris Lucero
- Ganesh Venkatesan
- Dibakar Das
- Laurent Cariou
- Carlos Cordeiro
- Many other colleagues across Intel and research partners

Time-sensitive Applications

Applications that require accurate time synchronization and predictable, usually low, latency with higher reliability

Industry 4.0, Robotics, Autonomous Systems

Immersive Experiences, AR/VR, Gaming

Example: basic industrial control system

Time synchronized (isochronous) Control Cycle

Latency/jitter may cause instability of the system

4

Determinism (guaranteed low latency) is also a requirement for other applications

Latency/jitter cause lagging/bad user experience

intel. 5

Growing need for time-sensitive computing and communications

Industrial


```
AR/VR/Gaming
```


ProAV

Power and energy

Automotive

Transportation

Not all applications are time-sensitive, but they all benefit from sharing the network

Delay-Tolerant

Time-Sensitive/Safety-Critical

What is TSN?

Time-Sensitive Networking (TSN) = deterministic data delivery with **bounded latency** without loss due to congestion or errors

Standards defined by the IEEE 802.1 TSN Task Group for IEEE 802 Local Area Networks (LAN)

Source: D. Cavalcanti, et al., "Extending Accurate Time Distribution and Timeliness Capabilities over the Air to Enable Future Wireless Industrial Automation Systems," Proceeding of the IEEE, Vol. 107, No. 6, June 2019.

8

TSN Requirements

- Precise synchronization to a reference time
 - accuracy from ns to ms range, but 1µs is expected to enable most applications
- Deterministic end-to-end delivery latency
 - maximum (bounded) latency from source to destination
 - average, mean or typical values are of NO INTEREST
- Extremely low packet loss probability
 - require highly reliable links/devices, losses are tolerated up to a given bound (process dependent)
 - consecutive losses (beyond a certain bound) may trigger fail-safe shutdown
- Convergence
 - time-sensitive streams and other traffic on the same network

Source: TSN Standards and ongoing projects @ www.ieee802.org/1/tsn

Time Synchronization (802.1AS)

- Enables the distribution of a single, accurate, time reference across the network (one time reference for the entire TSN domain)
 - Time is used to coordinate application behavior (sensors, controller, actuators)
 - Time is used to configure TSN tools (e.g., Time-Aware scheduling – 802.1Qbv)

Time-Aware Scheduling (802.1Qbv)

Time-gated queues controlled by a cyclic schedule

Protected Windows for time-sensitive traffic along the end-to-end path (avoid congestion delay caused by low priority traffic)

TSN Configuration Model and Assumptions

802.1Qcc Centralized Model

- Control plane (logical connection) between CUC and End Devices
- Control plane (logical connection) between CNC and TSN bridges

The IEEE 802.1Qcc std defines several configuration models (centralized and distribute)

Assumptions:

- Time-critical traffic streams (max packet size and inter-arrival time) are known a priori (at configuration stage)
- All TSN devices are synchronized to the same reference clock (through 802.1AS)
- The CUC collects the traffic stream requirements from end devices (Talkers/Listeners) and the CNC discovers the network topology
- The CNC computes the **transmission schedule and the end-to-end path** for each traffic stream and communicate the schedule to the CUC
- The CNC configures the schedule at TSN Bridges, and the CUC configures the schedule in the end devices (e.g. control plane using YANG/NETCONF)

Flexibility, Re-configurability, Mobility, Lower maintenance costs, ...

Wireless has obvious benefits for many time-sensitive applications

Wireless Applications

Flexibility, speed, efficiency with mobile robots. Edge/remote control via deterministic wireless enables lower power/cost robots [Next generation smart manufacturing]

"It would be desirable to use wireless communication to connect the nacelle and the rotor, because of the <u>very</u> <u>expensive slip rings</u>, but existing wireless solutions are lacking the necessary determinism and reliability." <u>Automation device vendor</u>

"The wiring harness is the <u>3rd highest cost</u> <u>component in a car</u> (behind the engine and chassis) and comprise <u>50% of the cost of labor for the entire</u> <u>car</u>".

[Automotive Ethernet: An Overview]

Closing the Performance Gap with wired TSN

Ethernet (802.3 MAC/PHY) provides **stable links** with predictable capacity

Wireless requires special considerations

- Stochastic in nature (variable capacity)
- Time/frequency/space varying (shadowing, multipath, ...)
- Harsh environment (obstructions, noise, interference)
- Typically, high error rate compared to wires

* Packets lost or that miss the deadline

New wireless capabilities

Higher speed, lower latency, higher reliability

Based on 3GPP Rel 16

mmwave and <7 GHz* (licensed and unlicensed)

5G New Radio, OFDMA flexible frame structure, 256 QAM (DL)

Ultra-Reliable Low Latency (URLLC) Based on IEEE 802.11ax

2.4, 5, 6 GHz band operation (unlicensed)

OFDMA, UL and DL MU-MIMO, 1024-QAM

Wi-Fi 6E Extends Wi-Fi 6 with 6 GHz band operation*

* 6 GHz operation subject to regulatory rules in each country.

Wi-Fi TSN

Current Generations of Wi-Fi

* 6 GHz operation subject to regulatory rules in each country.

Source: <u>https://www.intel.com/content/dam/www/public/us/en/documents/pdf/wi-fi-7-and-</u>beyond.pdf

Ethernet and Wi-Fi in a TSN Capable LAN

Higher layers						
802.1 TSN Layer						
802 LAN Medium						
802.3 (Ethernet)		802.11 (Wi-Fi)				

Link

Layer

PHY

802.1AS Time Synchronization over 802.11

(Master)

(Slave)

• Fine Timing Measurement (FTM) IEEE 802.11-2016

*PPM offset to neighbor

802.1AS over 802.11 FTM

FTM procedure

Figure 11-35—Example negotiation and measurement exchange sequence, ASAP=0, and FTMs per Burst = 2 Source: IEEE 802.11-2020

802.11 action frames are used to compute:

LinkDelay = [(t4-t1)-(t3-t2)]/2

NeighborRateRatio = (t1'-t1)/(t2'-t2)

TimeOffset = [(t2-t1)-(t4-t3)]/2

In addition to TSN time sync, FTM also enables positioning/ranging relative to the peer (<1m ranging accuracy in line of sight)

WTSN time synchronization implementation

WTSN SW Stack

End to End Hybrid (wired-wireless) Time Synchronization (TM Based, Integrated)

Time-Aware Shaping (802.1Qbv) over Wireless

802.1Qbv over (EDCA) Wi-Fi 5

Priority Traffic: 100 bytes packet every 50 ms with background BE from 1Mbps to 100 Mbps and Qbv cycle time of 50 ms

Latencey distribution without Qbv schedules

Latencey distribution with Qbv schedules

WTSN Enabling Collaborative Robotics

Experimental setup collaborative robotics

DDS

QoS Mapping t Qbv Schedule

đ

NSL

/image (RGB) QoS = Best Effort

Direction of Rotation

Port #1

1.5ms

7.5ms

0

10 ms

Cycle Time

Gate

 G_1

 $\overline{\mathsf{G}_0}$

/command QoS = Reliable/ Deadline

Intel NUC8i7BEH (w/ Jefferson Peak Direction of Rotation

1ms

Х

0 Gate Open

Gate Closed

WTSN enabled

without WTSN

[S. Sudhakaran et. at. Enabling QoS for Collaborative Robotics Applications with Wireless TSN, ICC 2021]

intel 26

Experiment Results (Wi-Fi 5 TSN)

Wireless TSN enables low latency for time-sensitive streams under congestion

NIST – Intel: WTSN enabled Robot work cell

Wi-Fi 6/6E: A Giant Leap Forward

Increasingly stringent usage (e.g., industrial IoT, AR/VR, robotics, cloud gaming) requirements demand continued evolution

Source: https://www.intel.com/content/dam/www/public/us/en/documents/pdf/wi-fi-7-and-beyond.pdf

Time-Aware scheduling with Wi-Fi 6

Wi-Fi 6 (802.11ax) defined a new approach to schedule communications The AP can use the trigger-based scheduling and OFDMA mode to deliver the data according to the worst-case latency and reliability

Simulation Assumptions:

20 MHz channel, SISO, 100 Bytes packets, Channel model E, STAs randomly distributed in a 50 m radio, latency-optimized scheduling strategy, managed network (no OBSS).

Wi-Fi 6 in Industrial IOT

Enabling E2E QoS and Determinism

INTEL AND CISCO: WORKING TOGETHER TO ENABLE WIRELESS SMART Manufacturing

Under 3 msec communication latency with Wi-Fi 6

(msec)	C _{MOCAP}	T _{UL}	C _e	T_{DL}	C_{MA}
Average	8.85	2.17	0.83	2.43	37.6
Std. Dev.	4.66	0.20	0.20	0.33	1.79
99 Perc.	16.0	2.50	1.20	2.98	40.0

Up Next: Wi-Fi 7

Based on IEEE P802.11be

P802.11be project goals* **Targeted usages** Amendment to 802.11, building on 11ax Maximum throughput of at least 30 Gbps Frequency range: between 1 & 7.250 GHz Improvements to worst-case latency & jitter $\widehat{\mathbf{n}}$

Target timeline

* http://www.ieee802.org/11/PARs/P802 11be PAR Detail.pdf

Source: https://www.intel.com/content/dam/www/public/us/en/documents/pdf/wi-fi-7-and-beyond.pdf

Key Wi-Fi 7 Features*

User Experience Data Rate

Spectrum Efficiency

Network Energy Efficiency

Connection Density

Key Enhancements

320 MHz channels 4096-QAM 16 spatial streams

Multi-link operation Multi-AP operation Deterministic low latency

* Accurate as of Dec/2020. Feature set and their specification are subject to change. Source: https://www.intel.com/content/dam/www/public/us/en/documents/pdf/wi-fi-7-and-beyond.pdf

Wi-Fi 7 enhancements for low latency & TSN

MLO (Multi-Link Operation)

Enables redundancy at the 802.11 MAC New tools to avoid congestion delay

Potential features for deterministic low latency

- QoS provisioning for low latency reliable traffic streams
- Restricted TWT service periods for low latency traffic
- Time-Aware (Qbv) scheduled access integrated in the MAC with protected service periods

Wi-Fi and TSN Evolution

TSN – 5G Integration

5G NR & URLLC capabilities

5G NR Flexible Frame Structure

Each slot has 14 OFDM symbols

Features to support low latency and high reliability:

- Shorter TTIs (down to 125 us)
- Self-contained subframe (control signaling, data and ACK/NACK in a single subframe)
- Polar codes (enhanced performance for short packets)
- Grant free UL access (less overhead and faster access)
- Integrations with TSN (Rel. 16)

5G Integration with TSN (Rel. 16)

intel. ³⁸

TSN time synchronization across a 5G system

Time-aware scheduling across a 5G system

TSN over 5G Testbed

- 5G Rel16: NR SA, URLLC
 - **5G + industrial application integration** with TSN bridges (802.1AS, 802.1Qbv)
- E2E KPIs achieved:

E2E KPIs		Max	Min	Avg	Reliability
TSN synchronization accuracy (ns)		300	2	13	N/A
TSN traffic latency (ms)	UL	3.57	3.40	3.53	99.999%
	DL	3.56	3.36	3.55	99.999%

Looking beyond 5G

Growing need for determinism and TSN

- Digital Physical experiences
- Exponential growth for connected computing
- Deterministic QoS
- Autonomy
- Sustainability and efficient

Source: https://hexa-x.eu/about/

Increasing Efficiency with Compute+Comms Co-design

- Control systems treat the "network" as ultra-reliable (wired) pipe
 - Thus, the expectation for "**wire-equivalent**" performance from wireless technologies
- What if, rather than trying to meet "wire-equivalent" latency and reliability, we look at meeting control, or task specific goals (e.g., stability, minimal drift, etc.)?
 - Co-design: Optimize the resources utilization in the wireless network based on the state of the control system
 - This enables the wireless network to support many more control loops compared to the traditional black box approach

[M. Eisen et al, Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems, IEEE IOT Journal, Vol. 6, No. 5, Oct 2019]

Conclusions

- Advances in Wi-Fi and 5G are enabling the extension of TSN to wireless
- Deployment of wireless TSN technologies will be gradual (time synchronization and time-aware scheduling are the first step)
- It is important to enable wired-wireless TSN integration across multiple transport technologies (Ethernet, Wi-Fi and 5G)
- The need for determinism and TSN will grow in many application domains
- Wireless networks and TSN capabilities will evolve
- Complexity of the TSN toolbox is increasing and automation capabilities will be needed to address a more diverse set of applications

#